
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Multi-Constraint Stock Portfolio Optimization for

Retail Investors Using Branch and Bound Algorithm

Kenneth Poenadi - 13523040

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: kennethpoenadi26@gmail.com , 13523040@std.stei.itb.ac.id

Abstract— Retail investors often deal with challenges that aren't

always considered in traditional portfolio optimization models like

tight budgets, flat trading fees, and limits on how many stocks they

can realistically manage. Most standard models assume perfect

market conditions and allow for smooth, continuous decisions,

which doesn’t reflect the real world. In this paper, we introduce a

more practical, constraint-aware approach to portfolio building

using the Branch and Bound algorithm. This method helps handle

situations where investors can only take long positions, need to stay

within strict budget constraints, pay both fixed and variable

transaction fees, and can only hold a limited number of different

assets. These types of constraints create a complex problem that

standard convex optimization techniques can’t solve well. Our

approach embraces that complexity using discrete optimization,

which is better suited for the kinds of decisions retail investors face.

We test the method using real historical stock data, and our results

show that it can generate portfolios that balance returns and risk

effectively while also being realistic, affordable, and actionable for

everyday investors.

Keywords— portfolio optimization, retail investors, transaction

costs, asset limits, Branch and Bound, discrete decision-making.

I. INTRODUCTION

In today’s interconnected world, nearly every move we

make ties back to economics. And when it comes to investing,

the age-old quest for the perfect balance between risk and

reward through smart asset allocation is still what we are

looking for. This concept is not merely theoretical; it is widely

applied in practical financial decision-making. For us, as
individuals or retail investors navigating today’s ever-changing

markets, the core mission is to build and fine tune our

investments portfolios to hit our personal financial goals.

At its heart, optimizing a portfolio means figuring out the

best way to invest your money to get the most returns over time,

all while staying within your comfort zone for risk. It’s a classic

two-sided challenge, always juggling conflicting aims. A key

strategy here is diversification, like spreading your bets so that

if one investment stumbles, the others can rise and keep your

overall portfolio in the plus side.

The journey of portfolio optimization really took off with
Markowitz’s groundbreaking work in 1952, laying the

foundation for how we think about investing quantitatively.

Since then, the field has exploded, thanks to incredible leaps in

software development, a massive surge in computing power,

and the use of parallel processing. This evolution marks a

pivotal shift that we’re no longer stuck with oversimplified,

purely theoretical models. Instead, we can now tackle the

messy, real-world complexities of financial markets with

powerful, computation-heavy approaches. The rise of multi-

criteria optimization also plays a huge role in broadening the

scope beyond just money, letting us factor in things like a

company’s impact on the environment or its ethical practices.

This holistic view is incredibly relevant for many retail

investors today who want their investments to align with their

values, leading to more personal and comprehensive ways to

build wealth.

However, the real puzzle and the reason we need algorithms
comes when we try to solve real-world limitations in these

sophisticated models. Think about it when you can’t buy half a

share, there are always transaction fees, you might want to

spread your money across different sectors, or there could be a

minimum amount you need to invest. These aren’t minor

details, they’re essential for creating investment strategies that

are robust, complete, and most importantly, doable. If we ignore

them, our optimal plans on paper can quickly become

impossible to manage, too expensive to execute, or just

unrealistic. Many traditional retail investor strategies often

found in academic literature simplify things by skipping these
non-partial constraints and fixed fees, largely for mathematical

convenience. While this might be acceptable for giant

institutional portfolios, these shortcuts really start breaking

down when we’re talking about the wealth levels of young or

novice investors. This starkly underlines why these often-

overlooked practical constraints are so critically important for

the average investor.

Simplifying investment models by ignoring real-world

constraints leads to a significant disconnect, especially for retail

investors. A giant financial institution managing billions

probably won't even notice a small $5 trading fee or the rule to

buy shares in blocks of 100, it's a tiny drop in their ocean. But
for you, the individual investor with a smaller portfolio, these

frictional costs (whether it's a flat fee every time you trade or

having to buy full shares) can quickly add up. They become a

significant drag, eating away at your potential profits. This

means a portfolio that looks perfect on paper might be

inefficient or even impossible to put into practice. So, while it

makes our models more complicated, carefully including these

real-world limitations isn't just for academics. It's an absolute

mailto:kennethpoenadi26@gmail.com
mailto:13523040@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

must if we want to give retail investors investment strategies

that are genuinely useful, realistic, profitable, and specifically

designed for them. To address these discrete and non-convex

challenges, this paper adopts the Branch and Bound algorithm,

a combinatorial optimization technique well-suited for handling
integer decisions and constraints. This method enables practical

portfolio construction tailored to the specific needs of retail

investors.

II. THEORY FOUNDATION

A. Investment Objectives

Essentially, investors want to get the best possible return on

their money, but only if the risk stays within a level, they're

comfortable with – that's what we mean by 'risk appetite.' We

can also flip that around and say they want to minimize risk

while still aiming for a certain minimum return or simply find
the sweet spot using a 'utility function' that balances both. In

practice, though, it's often easier for investors to think about

directly limiting their portfolio's risk (like its ups and downs, or

'variance') rather than setting a minimum profit goal. On top of

that, advanced strategies now also include something called

Conditional Value-at-Risk (CVaR) to help manage 'tail risk,'

which is super important for protecting against those really big,

unexpected losses

B. Key Constraints for Retail Investors

These constraints are essential features that shape the

portfolio optimization problem to better reflect real-world

investment conditions.

1. Budget and Holding Limits:

- Long-Only or No-Short-Selling Constraint:

This is a common constraint that dictates that

investors can only purchase stocks, taking long

positions, meaning the allocation weight for each
asset must be non-negative (w ≥ 0). This is a linear

and convex constraint.

- Capital Budget Constraint: Assuming no short-

shelling and no other forms of leverage, the total

portfolio must satisfy a budget constraint,

typically

1T w + c = 1 (1)

where w is a vector of portfolio weights, where

each element represents the proportion of your

total portfolio invested in a specific risky asset.

Prepare Your Paper Before Styling. 1 is a vector

of one, T (superscript) denotes the transpose

operation, turning one into a row vector. So, 1T w

calculates the sum of all individual asset weights

in w, c represents the proportion of your total

portfolio held as cash.

- Holding Constraints: Practitioners set limits on
maximum positions (l ≤ w ≤ u) to prevent

overexposure and ensure diversification.

Minimum positions can also be set if certain

assets are desired. These are linear and convex

constraints.

2. Transaction Costs:

Transaction costs (e.g., commissions, fees) reduce the
funds’ capital and must be properly to avoid substantial impacts

on portfolio performance.

 Realistic transaction costs are often non-convex. They

typically include a fixed fee (η) plus a variable component (ρ *

Value), meaning the transaction cost per unit is higher for

smaller amounts. This results in a non-convex function, as the

transaction cost decreases relatively when the trading amount

increases. This non-convexity makes the optimization problem

significantly more challenging.

The moment you introduce fixed trading fees or more

complex concave transaction costs; the entire portfolio

optimization problem changes dramatically. Unlike simpler,
more straightforward situations that standard solvers (like LP

(Linear Programming) / QP (Quadratic Programming)) can

easily manage, these kinds of costs make the problem non-

convex. This means a solver might get stuck on a local

optimum, a satisfactory solution that is not the absolute best one

globally. For individual investors, this is not just theory; it has

real financial consequences. If you are making lots of small

trade, which is common for lots of individual investors, those

fixed fees can eat up a huge chunk of your potential profits,

making the trades surprisingly expensive. Any investment

model that ignores this reality would suggest trades that lose
you money. This is exactly why we need sophisticated tools like

the Branch and Bound algorithm. It is specifically designed to

systematically search for the absolute best solution, even when

these tricky, non-convex costs are involved, by wisely

introducing integer variables into the problem.

3. Cardinality Constraints

Cardinality constraints limit the number of assets that can

be included in a portfolio to a predefined number K. This

constraint is particularly relevant for retail investors, who may

not have the capacity financially or administratively to manage

many assets simultaneously.

To model this, we introduce binary decision variables yi for

each asset iii, where:

These binary variables are then used to impose the cardinality

constraint:

 (2)

where:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

- n is the total number of candidate assets, and

- K is the maximum number of assets that can be

selected

To ensure consistency between the binary decision yi and the

actual allocation wi (i.e., the fraction of capital invested in asset

iii), the following coupling constraint is added:

 (3)

where:

- wi is a continuous variable representing the

fraction of budget allocated to asset i,

- ui is upper bound (maximum allowable

allocation) for asset i,

- if yi = 0, then wi must be 0 (i.e., the asset is not

included),

- if yi = 1, then wi can be any value up to ui.

This transformation adds further combinatorial complexity

to the portfolio optimization problem, converting it into a

Mixed-Integer Linear Programming (MILP) or Mixed-Integer

Quadratic Programming (MIQP) model depending on the

chosen risk metric. The inclusion of integer and binary

variables, along with upper-bound continuous weights, results

in a highly discrete search space. These characteristics make

Branch and Bound an ideal algorithmic approach, as it
systematically explores feasible combinations while pruning

suboptimal ones efficiently. In this way, the optimization

process can realistically account for retail investors’ practical

limitations such as discrete purchases and portfolio simplicity

while still aiming for robust financial performance.

4. Minimal Transaction Unit (MTU) Constraints

Retail brokers often enforce trading in minimum units, such

as lots of one hundred shares. To respect this, we model the

weight of each asset wi as multiple of its minimal tradable unit

mi, with an integer variable zi:

(4)

This further increases the discrete nature of the problem and

transforms it into a Mixed-Integer Nonlinear Programming

(MINLP) problem. This constraint is particularly relevant for

low-budget investors for whom fractional shares are not an

option.

5. Diversification and Sector Constraints

To prevent risk concentration, diversification constraints

can be applied. One approach is to restrict the portfolio’s spread

using squared ℓ2-norm:

 (5)

Smaller D promotes more evenly distributed allocations.

Additionally, sector-based diversification constraints can be

imposed:

(6)

where Sj is the set of assets in sector j, and Sj is the maximum

allowable weight for that sector. These constraints help manage

exposure to sector-specific risks.

6. Turnover Constraints

In multi-period or rebalancing scenarios, minimizing

turnover is essential to avoid excessive trading costs. Turnover

is measured as the ℓ1-norm of the difference between the new

portfolio w and the current portfolio w0:

C. Mathematical Nature of Constraints and Non-Convexity

Challenges

Many commonly used portfolio constraints such as budget

limits, long-only positions, holding bounds, and turnover limits

are either linear or convex. As a result, they can be efficiently

handled using conventional convex optimization techniques.

However, when constraints like cardinality (limiting the

number of assets in the portfolio) and realistic transaction costs

(such as fixed fees or concave cost functions) are introduced,

the problem becomes non-convex. This transforms the

optimization task into a Mixed-Integer Linear Program (MILP)

or even a Mixed-Integer Nonlinear Program (MINLP), both of

which are significantly more difficult to solve than their convex

counterparts.

Classical models like Markowitz’s mean-variance

optimization assume continuous asset weights, leading to well-

behaved convex problems that can be solved using Quadratic

Programming (QP). However, introducing real-world

constraints such as the need to decide whether a stock is

included at all (cardinality) or to account for fixed transaction

fees requires binary or integer decisions (e.g., "Do I include this

stock?" or "How many full lots should I buy?"). These decisions

shift the problem into the realm of Mixed-Integer Programming

(MIP), where standard continuous solvers are no longer

applicable. This fundamental change in structure is precisely
why Branch and Bound algorithms are essential; they are

purpose-built to efficiently explore discrete solution spaces and

find globally optimal solutions under such complex

constraints.Table 1 below summarizes key constraints relevant

to retail investors and their computational implications:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Constraint
Name

Purpose Mathematical
Formulation

Complexity

Budget Ensures total
capital is fully

allocated

Σxᵢ = 1 Convex

Long-Only Prevents short
shelling; only
allows asset
purchases

xᵢ ≥ 0 Convex

Holding
Limits

Restricts asset
concentration;

promotes
diversification

lᵢ ≤ xᵢ ≤ uᵢ Convex

Cardinality Limits number
of active
holdings and
manageability

MinNum ≤ Σyᵢ ≤

MaxNum

Non-Convex
(requires
binary Vars)

Fixed

Transaction
Costs

Models fixed

trading fees
regardless of
trade size

Cost = fixed_fee

× zᵢ

Non-Convex

(binary
decision:
trade/no trade)

Minimal
Transaction
Unit

Enforces
trading in
minimum lot
sizes, e.g.,

whole shares

xᵢ = 0 or xᵢ ≥

min_unit_valueᵢ

Non-Convex
(integer or
binary vars)

Portfolio
Turnover

Limits amount
of rebalancing
(change from
current
holdings)

‖x - x₀‖₁ ≤ τ Convex
(L₁ norm)

Table 1. Key Portfolio Constraints for Retail Investors

D. Branch and Bound

First, let’s understand what Branch and Bound is and how

does it work? The Branch and Bound (B&B) algorithm is a

powerful and versatile general-purpose algorithmic framework

specifically designed for solving optimization problems that
involve discrete or integer decisions. Unlike exhaustive

enumeration, which checks every single possibility (often

computationally infeasible), B&B systematically searches for

the optimal solution without having to explore the entire

solution space. It is particularly effective for problems where

the objective is to either minimize or maximize a function,

subject to various constraints.

B&B operates on the principle of dynamically building a

state-space tree to explore potential solutions. While it shares

similarities with tree-search algorithms like Depth-First Search

(DFS) or Breadth-First Search (BFS) in its exploration method,
its core strength lies in its intelligent pruning mechanism that

significantly reduces the search space. B&B can be seen as a

sophisticated combination of BFS and a least cost search

strategy. Instead of simply expanding nodes based on their

generation order (like FIFO in pure BFS), B&B prioritizes

expanding the node that has the most promising cos" (or

bound).

At an elevated level, the algorithm systematically works

through the following iterative steps:

1. Relaxing the Integrality Constraints (Bounding Phase)

- The first crucial step in B&B is to relax the
complex integer or discrete constraints of the

original optimization problem. For instance, if a

problem requires variables to be whole numbers

(e.g., you can only buy 5 or 6 shares, not 5.5),

these constraints are temporarily ignored,

allowing the variables to take on continuous

(fractional) values.

- This transformed problem is often a Linear

Program (LP) if the original problem becomes

linear after relaxation, or a Quadratic Program

(QP) if the objective function is quadratic (like

variance in portfolio optimization) and constraints
are linear.

- Solving this relaxed, continuous problem

provides an optimistic bound on the objective

function. For a minimization problem, this

relaxed solution gives a lower bound (the best you

could possibly do if you didn't have to stick to

integers), and for a maximization problem, it

gives an upper bound. This bound is critical

because it tells us the best possible outcome

within that specific branch of the search tree.

2. Branching on a Fractional Decision Variable

If the solution obtained from the relaxed problem

contains any variables that are supposed to be integers but

end up with fractional values (e.g., suggesting you buy 2.7

shares of stock), the algorithm performs a branching

operation.

This involves creating two (or more) new subproblems

from the current node. For a fractional variable x_i with a

value of v, one subproblem will add the constraint x_i ≤

floor(v) (rounding down), and the other will add x_i ≥

ceil(v) (rounding up). For example, if x_i = 2.7, one branch

explores solutions where x_i ≤ 2, and the other where x_i ≥

3.
This process effectively divides the original problem's

feasible region into smaller, mutually exclusive sub-

regions.

3. Bounding Each Subproblem

Each newly created subproblem is then solved by

relaxing its integrality constraints, just like the initial

problem. The optimal objective value from this relaxed

version serves as the bound for that specific subproblem.

This bound indicates the best possible result that could be

achieved if we were to continue exploring solutions within

that branch. The cost ĉ(i) of a node i typically estimates the
cheapest path to a goal node through i. In a general scenario

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

where the solution's location is unknown, ĉ(i) is estimated

heuristically and represents a lower bound on the search cost

from state i. It can be seen as ĉ(i) = f(i) + ĝ(i), where f(i) is

the cost to reach node i from the root, and ĝ(i) is the

estimated cost from node i to the goal node.

4. Pruning (Eliminating Unpromising Branches)

This is where Branch and Bound gain their efficiency.

The algorithm prunes (discards) any branch of the search

tree that is deemed unpromising, meaning it cannot lead to

a better solution than the best feasible (integer) solution

found so far (known as the incumbent solution). A branch

can be pruned if:

- Its LP/QP relaxation is infeasible (no solution

exists that satisfies all constraints, even relaxed

ones).

- Its calculated bound is worse than the objective

value of the current incumbent integer solution.

For example, in a minimization problem, if a

branch's lower bound is already higher than an

integer solution found elsewhere, that branch can

be cut.

- The LP/QP relaxation of a subproblem yields an

integer solution directly. If this integer solution is
better than the current incumbent, it becomes the

new incumbent solution.

5. Updating the Incumbent Solution

Whenever a relaxed subproblem yields a solution

where all integer variables happen to be integers, and this

solution is better than the current best integer solution found

so far, it becomes the new incumbent solution. This

incumbent solution is the best feasible (integer-respecting)

solution known at any given point.

6. Repeating the Process

The algorithm continually selects the most promising
live node (the one with the best bound, e.g., the smallest

lower bound for a minimization problem) and repeats the

branching, bounding, and pruning steps.

This iterative process continues until there are no more

active branches that could potentially yield a better solution

than the current incumbent. At this point, the incumbent

solution is guaranteed to be the global optimum (or within a

user-specified tolerance for large problems).

By systematically exploring the solution space while

intelligently discarding substantial portions through

pruning, the Branch and Bound algorithm provides a robust

and often efficient method for solving complex optimization

problems with discrete or integer variables, even when

facing non-convexities introduced by factors like fixed

transaction costs.

III. ANALYTICAL CALCULATION

Now that we've covered the essential groundwork, it's time

to put our strategy to the test using actual real-world market
data. Below, you'll find a complete, step-by-step example. We'll

be using real closing-price data for a handful of stocks that we'll

assume are our top picks, ready to be organized into an optimal

portfolio.

Table 2. Closing Prices of Stocks (May 28 - June 4, 2025)

Date (YY-MM-

DD)

GOOG AAPL MSFT

2025-05-28 171.38 200.42 460.69

2025-05-29 172.96 199.95 458.68

2025-06-02 170.37 201.70 461.97

2025-06-03 167.71 203.27 462.97

2025-06-04 169.39 202.82 463.87

 Now we calculate the daily simple return of the data above

by:

(7)

 where Pt is the closing price of day t and Pt-1 is the closing

price of the day before t. And after applying so we get these

results:

Date (YY-

MM-DD)

GOOG AAPL MSFT

2025-05-29 (172.96−171.

38)/171.38 =

−0.002838

(199.95−200.

42)/200.42 =

−0.002345

(458.68−460.

69)/460.69 =

−0.004340

2025-06-02 (170.37−172.

96)/172.96 =

−0.01472

0.00879 0.00719

2025-06-03 (167.71−170.

37)/170.37 =

−0.01582

 0.00763 0.00216

2025-06-04 (169.39−167.

71)/167.71 =

0.00980

−0.00221 0.00194

 Now we calculate μ (mean) and Σ (covariance) with the

equation as follows:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Mean return(μ):

(8)

Covariance(Σ):

 (9)

After applying the formula, we get the following values:

Before we start computing using the algorithm, we need to

determine the constraints and so the constraint is as follows:

- Budget constraint:

- Long-only

- Linking weight to selection

- Cardinality (at most 2 assets to buy)

- Risk aversion and max positions

Next, we are gonna start the Branch & Bound Steps:

1. First, compute the Root, to do that we first compute

the weight (w0) which is GOOG using Lagrangian

with multiplier γ for ∑wi = 1:

(10)

 Next using KKT first-order conditions:

 Now we can solve the 3 x 3 system together with 1T w = 1

to find w and γ. Then we can use a small-scale QP solver or by

explicitly inverting and enforcing ∑i wi = 1) yields, we get the

following:

 The first entry is zero because GOOG’s expected return is

negative, so the optimal risk-return tradeoff puts no weight on

a losing asset. And so now we can compute f0:

2. First Branch: yb (AAPL has wb = 0.64 fractional)

We now create two child nodes from branching on yB ∈

{0,1}

- Node 1 (yb = 0 → Wb = 0)

Since ∑wi = 1, we must now solve the root problem over only

GOOG and MSFT:

That is to optimize over:

 w=[wA, 0, wC] (only GOOG and MSFT will be considered)

Now we are gonna compute the 2 cases and choose the one that

is larger in f value.

 Case 1: Full GOOG → w=[1, 0, 0]

Case 2: Full MSFT → w = [0, 0, 1]

So, we chose case 2 since its value is higher.

- Node 2: yb = 1 → 0 ≤ wb ≤ 1

We now solve the relaxed QP again, but still under the

cardinality constraint (at most 2 assets selected). GOOG is

already excluded due to negative return, so we allow:

AAPL and MSFT, or maybe AAPL only if optimal

Running the QP solver (or through direct substitution), we get:

We keep this node, since it is better than the current best one

(0.001715).

3. Node 2 has 2 more child’s

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

And from Node 2, we can get another 2-child node which is

- Node 2A (yc = 0)

- Node 2B (yc = 1)

And with the steps provided like before, we can compute each

node to be

- Node 2A:

- Node 2B:

As we can see from the results, Node 2B is worse than 0.003055

so we prune node 2B and we choose 2A since it is the highest

in value.

So, from Branch & Bound, the optimization reveals that, under

the given constraints (max 2 assets, long-only, and linking

constraints), the best portfolio is to fully invest in AAPL only,

which offers the highest risk-adjusted return in this setup. The

method allows us to systematically explore and prune

suboptimal combinations, making the selection data-driven,

optimal, and explainable.

Picture 1. Visualization of Branch and Bound shown with tree

(Source: Writer’s Picture)

IV. PROGRAM IMPLEMENTATION

 Obviously, we wouldn’t want to perform these calculations
by hand. Therefore, the writer has provided a Python-based

program that leverages SciPy and NumPy to compute the

optimal portfolio quickly and accurately.

Picture 2. Program Visualization

(Source: Writer’s Picture)

Picture 3. Program Results

(Source: Writer’s Picture)

 As we can see from the program, we can conclude that our

calculation that we have done earlier was correct but was a bit

off because we were doing some approximation.

 This tool is especially helpful when scaling up the problem,

say, from 3 assets to 30 or more here manual calculation would

be impractical. With just a few lines of code and real market

data as input, we can explore various portfolio combinations
and instantly get optimal solutions, all while respecting

complex constraints like cardinality and risk control.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 In other words, the program does heavy lifting, so we can

focus on interpreting the results and making smart investment

decisions.

V. CONCLUSION

 Based on the comprehensive analysis and computation we

have conducted, it is evident that solving the portfolio

optimization problem under real-world constraints such as

budget limitations, fixed transaction fees, and a cap on the

number of investable assets is significantly more complex than
traditional continuous models suggest. The incorporation of

cardinality constraints and binary decisions transforms the

problem into a Mixed-Integer Quadratic Program (MIQP),

which cannot be efficiently solved by conventional convex

solvers.

 By leveraging the Branch and Bound algorithm, we

demonstrated a practical, exact approach capable of handling

these discrete constraints. Our numerical example, based on

real market data, validates that this method not only finds the

globally optimal portfolio under the imposed limitations, but
also remains interpretable and applicable for retail investors.

The results matched our expectations and manual

approximations, but with greater precision and speed,

especially when scaled.

 Practically speaking, this framework can assist individual

investors in building portfolios that are not only optimal in

terms of risk-return tradeoffs, but also actionable respecting

trading costs, minimum trade units, and asset manageability. As

a recommendation, future work can explore extensions to

dynamic or multi-period portfolio models, integrate more

granular constraints like tax lots, or combine Branch and Bound
with heuristics to improve scalability for larger asset universes.

VIDEO LINK AT YOUTUBE

Youtube Link: https://youtu.be/mD76ahKVbd4?si=Yifm-

CzMUBbt2r3p

Source Program:

https://github.com/KennethhPoenadi/MakalahSTIMA

ACKNOWLEDGMENT

The author extends heartfelt gratitude to God for providing

wisdom, perseverance, and opportunity to complete this paper

successfully. Sincere appreciation is all extended to Dr. Nur
Ulfa Maulidevi, S.T, M.Sc., the lecturer of the IF2211

Algorithmic Strategy.

REFERENCES.

[1] Markowitz, H. 1952. “Portfolio Selection”. The Journal of Finance, 7(1),

77-91. https://ideas.repec.org/a/bla/jfinan/v7y1952i1p77-91.html

(accessed on 21 June 2025).

[2] Elton, E. J., Gruber, M. J., Brown, S. J., & Goetzmann, W. N. 2009.

Modern Portfolio Theory and Investment Analysis (8th ed.). John Wiley

& Sons.

https://books.google.com/books/about/Modern_Portfolio_Theory_and_I

nvestment_A.html?id=aOtcTEQ3DAUC (accessed on 21 June 2025).

[3] Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. 2000.

“Heuristics for cardinality constrained portfolio optimisation”.

Computers & Operations Research, 27(13), 1271-1296.

http://web.ist.utl.pt/~adriano.simoes/tese/referencias/Papers%20-

%20Antonio/Heuristics,%20Cardinality.pdf (accessed on 21 June 2025).

[4] Mansini, R., Ogryczak, W., & Speranza, M. G. 2014. “Linear

programming models for portfolio selection”. European Journal of

Operational Research, 234(1), 226-238.

https://www.researchgate.net/publication/228640748_Multiple_criteria_

linear_programming_model_for_portfolio_selection (accessed on 21

June 2025).

[5] Konno, H., & Wijayanayake, A. 1999. “Portfolio optimization problem

under concave transaction costs and minimal transaction unit constraints”.

Journal of Operations Research Society of Japan, 42(3), 332-345.

https://www.researchgate.net/publication/225775838_Portfolio_Optimiz

ation_Problem_under_Concave_Transaction_Costs_and_Minimal_Tran

saction_Unit_Constraints (accessed on 21 June 2025).

[6] Cesarone, F., & Staffolani, S. 2019. “Optimizing Transition Strategies for

Small to Medium Sized Portfolios”. SSRN Electronic Journal.

https://arxiv.org/abs/2401.13126 (accessed on 21 June 2025).
[7] Nemhauser, G. L., & Wolsey, L. A. 1988. Integer and Combinatorial

Optimization. John Wiley & Sons.

https://books.google.com/books/about/Integer_and_Combinatorial_Opti

mization.html?id=MvBjBAAAQBAJ (accessed on 21 June 2025).

[8] Papadimitriou, C. H., & Steiglitz, K. 1998. Combinatorial Optimization:

Algorithms and Complexity. Dover Publications.

https://books.google.com/books/about/Combinatorial_Optimization.html

?id=cDY-joeCGoIC (accessed on 21 June 2025).

[9] GeeksforGeeks. n.d. “Branch and Bound Algorithm”.

https://www.geeksforgeeks.org/dsa/branch-and-bound-algorithm/

(accessed on 21 June 2025).

[10] Munir, Rinaldi. 2025. “Strategi Algoritma”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/stima24-25.htm (accessed on 21 Juni 2025)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi

Bandung, 22 Juni 2025

Kenneth Poenadi 13523040

https://youtu.be/mD76ahKVbd4?si=Yifm-CzMUBbt2r3p
https://youtu.be/mD76ahKVbd4?si=Yifm-CzMUBbt2r3p
https://github.com/KennethhPoenadi/MakalahSTIMA
https://ideas.repec.org/a/bla/jfinan/v7y1952i1p77-91.html
https://books.google.com/books/about/Modern_Portfolio_Theory_and_Investment_A.html?id=aOtcTEQ3DAUC
https://books.google.com/books/about/Modern_Portfolio_Theory_and_Investment_A.html?id=aOtcTEQ3DAUC
http://web.ist.utl.pt/~adriano.simoes/tese/referencias/Papers%20-%20Antonio/Heuristics,%20Cardinality.pdf
http://web.ist.utl.pt/~adriano.simoes/tese/referencias/Papers%20-%20Antonio/Heuristics,%20Cardinality.pdf
https://www.researchgate.net/publication/228640748_Multiple_criteria_linear_programming_model_for_portfolio_selection
https://www.researchgate.net/publication/228640748_Multiple_criteria_linear_programming_model_for_portfolio_selection
https://www.researchgate.net/publication/225775838_Portfolio_Optimization_Problem_under_Concave_Transaction_Costs_and_Minimal_Transaction_Unit_Constraints
https://www.researchgate.net/publication/225775838_Portfolio_Optimization_Problem_under_Concave_Transaction_Costs_and_Minimal_Transaction_Unit_Constraints
https://www.researchgate.net/publication/225775838_Portfolio_Optimization_Problem_under_Concave_Transaction_Costs_and_Minimal_Transaction_Unit_Constraints
https://arxiv.org/abs/2401.13126
https://books.google.com/books/about/Integer_and_Combinatorial_Optimization.html?id=MvBjBAAAQBAJ
https://books.google.com/books/about/Integer_and_Combinatorial_Optimization.html?id=MvBjBAAAQBAJ
https://books.google.com/books/about/Combinatorial_Optimization.html?id=cDY-joeCGoIC
https://books.google.com/books/about/Combinatorial_Optimization.html?id=cDY-joeCGoIC
https://www.geeksforgeeks.org/dsa/branch-and-bound-algorithm/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/stima24-25.htm
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/stima24-25.htm

