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Abstract— Retail investors often deal with challenges that aren't 

always considered in traditional portfolio optimization models like 

tight budgets, flat trading fees, and limits on how many stocks they 

can realistically manage. Most standard models assume perfect 

market conditions and allow for smooth, continuous decisions, 

which doesn’t reflect the real world. In this paper, we introduce a 

more practical, constraint-aware approach to portfolio building 

using the Branch and Bound algorithm. This method helps handle 

situations where investors can only take long positions, need to stay 

within strict budget constraints, pay both fixed and variable 

transaction fees, and can only hold a limited number of different 

assets. These types of constraints create a complex problem that 

standard convex optimization techniques can’t solve well. Our 

approach embraces that complexity using discrete optimization, 

which is better suited for the kinds of decisions retail investors face. 

We test the method using real historical stock data, and our results 

show that it can generate portfolios that balance returns and risk 

effectively while also being realistic, affordable, and actionable for 

everyday investors. 

Keywords— portfolio optimization, retail investors, transaction 

costs, asset limits, Branch and Bound, discrete decision-making. 

I. INTRODUCTION 

In today’s interconnected world, nearly every move we 

make ties back to economics. And when it comes to investing, 

the age-old quest for the perfect balance between risk and 

reward through smart asset allocation is still what we are 

looking for. This concept is not merely theoretical; it is widely 

applied in practical financial decision-making. For us, as 
individuals or retail investors navigating today’s ever-changing 

markets, the core mission is to build and fine tune our 

investments portfolios to hit our personal financial goals. 

At its heart, optimizing a portfolio means figuring out the 

best way to invest your money to get the most returns over time, 

all while staying within your comfort zone for risk. It’s a classic 

two-sided challenge, always juggling conflicting aims. A key 

strategy here is diversification, like spreading your bets so that 

if one investment stumbles, the others can rise and keep your 

overall portfolio in the plus side. 

The journey of portfolio optimization really took off with 
Markowitz’s groundbreaking work in 1952, laying the 

foundation for how we think about investing quantitatively. 

Since then, the field has exploded, thanks to incredible leaps in 

software development, a massive surge in computing power, 

and the use of parallel processing. This evolution marks a 

pivotal shift that we’re no longer stuck with oversimplified, 

purely theoretical models. Instead, we can now tackle the 

messy, real-world complexities of financial markets with 

powerful, computation-heavy approaches. The rise of multi-

criteria optimization also plays a huge role in broadening the 

scope beyond just money, letting us factor in things like a 

company’s impact on the environment or its ethical practices. 

This holistic view is incredibly relevant for many retail 

investors today who want their investments to align with their 

values, leading to more personal and comprehensive ways to 

build wealth. 

However, the real puzzle and the reason we need algorithms 
comes when we try to solve real-world limitations in these 

sophisticated models. Think about it when you can’t buy half a 

share, there are always transaction fees, you might want to 

spread your money across different sectors, or there could be a 

minimum amount you need to invest. These aren’t minor 

details, they’re essential for creating investment strategies that 

are robust, complete, and most importantly, doable. If we ignore 

them, our optimal plans on paper can quickly become 

impossible to manage, too expensive to execute, or just 

unrealistic. Many traditional retail investor strategies often 

found in academic literature simplify things by skipping these 
non-partial constraints and fixed fees, largely for mathematical 

convenience. While this might be acceptable for giant 

institutional portfolios, these shortcuts really start breaking 

down when we’re talking about the wealth levels of young or 

novice investors. This starkly underlines why these often-

overlooked practical constraints are so critically important for 

the average investor. 

Simplifying investment models by ignoring real-world 

constraints leads to a significant disconnect, especially for retail 

investors. A giant financial institution managing billions 

probably won't even notice a small $5 trading fee or the rule to 

buy shares in blocks of 100, it's a tiny drop in their ocean. But 
for you, the individual investor with a smaller portfolio, these 

frictional costs (whether it's a flat fee every time you trade or 

having to buy full shares) can quickly add up. They become a 

significant drag, eating away at your potential profits. This 

means a portfolio that looks perfect on paper might be 

inefficient or even impossible to put into practice. So, while it 

makes our models more complicated, carefully including these 

real-world limitations isn't just for academics. It's an absolute 
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must if we want to give retail investors investment strategies 

that are genuinely useful, realistic, profitable, and specifically 

designed for them. To address these discrete and non-convex 

challenges, this paper adopts the Branch and Bound algorithm, 

a combinatorial optimization technique well-suited for handling 
integer decisions and constraints. This method enables practical 

portfolio construction tailored to the specific needs of retail 

investors. 

II. THEORY FOUNDATION 

A. Investment Objectives 

Essentially, investors want to get the best possible return on 

their money, but only if the risk stays within a level, they're 

comfortable with – that's what we mean by 'risk appetite.' We 

can also flip that around and say they want to minimize risk 

while still aiming for a certain minimum return or simply find 
the sweet spot using a 'utility function' that balances both. In 

practice, though, it's often easier for investors to think about 

directly limiting their portfolio's risk (like its ups and downs, or 

'variance') rather than setting a minimum profit goal. On top of 

that, advanced strategies now also include something called 

Conditional Value-at-Risk (CVaR) to help manage 'tail risk,' 

which is super important for protecting against those really big, 

unexpected losses  

B. Key Constraints for Retail Investors 

These constraints are essential features that shape the 

portfolio optimization problem to better reflect real-world 

investment conditions. 

1. Budget and Holding Limits: 

- Long-Only or No-Short-Selling Constraint: 

This is a common constraint that dictates that 

investors can only purchase stocks, taking long 

positions, meaning the allocation weight for each 
asset must be non-negative (w ≥ 0). This is a linear 

and convex constraint. 

- Capital Budget Constraint: Assuming no short-

shelling and no other forms of leverage, the total 

portfolio must satisfy a budget constraint, 

typically  

1T w + c = 1    (1) 

where w is a vector of portfolio weights, where 

each element represents the proportion of your 

total portfolio invested in a specific risky asset. 

Prepare Your Paper Before Styling. 1 is a vector 

of one, T (superscript) denotes the transpose 

operation, turning one into a row vector. So, 1T w 

calculates the sum of all individual asset weights 

in w, c represents the proportion of your total 

portfolio held as cash. 

- Holding Constraints: Practitioners set limits on 
maximum positions (l ≤ w ≤ u) to prevent 

overexposure and ensure diversification. 

Minimum positions can also be set if certain 

assets are desired. These are linear and convex 

constraints. 

2. Transaction Costs: 

Transaction costs (e.g., commissions, fees) reduce the 
funds’ capital and must be properly to avoid substantial impacts 

on portfolio performance. 

 Realistic transaction costs are often non-convex. They 

typically include a fixed fee (η) plus a variable component (ρ * 

Value), meaning the transaction cost per unit is higher for 

smaller amounts. This results in a non-convex function, as the 

transaction cost decreases relatively when the trading amount 

increases. This non-convexity makes the optimization problem 

significantly more challenging. 

The moment you introduce fixed trading fees or more 

complex concave transaction costs; the entire portfolio 

optimization problem changes dramatically. Unlike simpler, 
more straightforward situations that standard solvers (like LP 

(Linear Programming) / QP (Quadratic Programming)) can 

easily manage, these kinds of costs make the problem non-

convex. This means a solver might get stuck on a local 

optimum, a satisfactory solution that is not the absolute best one 

globally. For individual investors, this is not just theory; it has 

real financial consequences. If you are making lots of small 

trade, which is common for lots of individual investors, those 

fixed fees can eat up a huge chunk of your potential profits, 

making the trades surprisingly expensive. Any investment 

model that ignores this reality would suggest trades that lose 
you money. This is exactly why we need sophisticated tools like 

the Branch and Bound algorithm. It is specifically designed to 

systematically search for the absolute best solution, even when 

these tricky, non-convex costs are involved, by wisely 

introducing integer variables into the problem. 

3. Cardinality Constraints 

Cardinality constraints limit the number of assets that can 

be included in a portfolio to a predefined number K. This 

constraint is particularly relevant for retail investors, who may 

not have the capacity financially or administratively to manage 

many assets simultaneously. 

To model this, we introduce binary decision variables yi for 

each asset iii, where: 

 

These binary variables are then used to impose the cardinality 

constraint: 

 (2) 

where: 
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- n is the total number of candidate assets, and 

- K is the maximum number of assets that can be 

selected 

To ensure consistency between the binary decision yi and the 

actual allocation wi (i.e., the fraction of capital invested in asset 

iii), the following coupling constraint is added: 

  (3) 

where: 

- wi is a continuous variable representing the 

fraction of budget allocated to asset i, 

- ui is upper bound (maximum allowable 

allocation) for asset i, 

- if yi = 0, then wi must be 0 (i.e., the asset is not 

included), 

- if yi = 1, then wi can be any value up to ui. 

This transformation adds further combinatorial complexity 

to the portfolio optimization problem, converting it into a 

Mixed-Integer Linear Programming (MILP) or Mixed-Integer 

Quadratic Programming (MIQP) model depending on the 

chosen risk metric. The inclusion of integer and binary 

variables, along with upper-bound continuous weights, results 

in a highly discrete search space. These characteristics make 

Branch and Bound an ideal algorithmic approach, as it 
systematically explores feasible combinations while pruning 

suboptimal ones efficiently. In this way, the optimization 

process can realistically account for retail investors’ practical 

limitations such as discrete purchases and portfolio simplicity 

while still aiming for robust financial performance. 

4. Minimal Transaction Unit (MTU) Constraints 

Retail brokers often enforce trading in minimum units, such 

as lots of one hundred shares. To respect this, we model the 

weight of each asset wi as multiple of its minimal tradable unit 

mi, with an integer variable zi: 

(4) 

This further increases the discrete nature of the problem and 

transforms it into a Mixed-Integer Nonlinear Programming 

(MINLP) problem. This constraint is particularly relevant for 

low-budget investors for whom fractional shares are not an 

option. 

5. Diversification and Sector Constraints 

To prevent risk concentration, diversification constraints 

can be applied. One approach is to restrict the portfolio’s spread 

using squared ℓ2-norm: 

 (5) 

 

Smaller D promotes more evenly distributed allocations. 

Additionally, sector-based diversification constraints can be 

imposed: 

(6) 

 

where Sj  is the set of assets in sector j, and Sj is the maximum 

allowable weight for that sector. These constraints help manage 

exposure to sector-specific risks. 

6. Turnover Constraints 

In multi-period or rebalancing scenarios, minimizing 

turnover is essential to avoid excessive trading costs. Turnover 

is measured as the ℓ1-norm of the difference between the new 

portfolio w and the current portfolio w0: 

C. Mathematical Nature of Constraints and Non-Convexity 

Challenges 

Many commonly used portfolio constraints such as budget 

limits, long-only positions, holding bounds, and turnover limits 

are either linear or convex. As a result, they can be efficiently 

handled using conventional convex optimization techniques. 

However, when constraints like cardinality (limiting the 

number of assets in the portfolio) and realistic transaction costs 

(such as fixed fees or concave cost functions) are introduced, 

the problem becomes non-convex. This transforms the 

optimization task into a Mixed-Integer Linear Program (MILP) 

or even a Mixed-Integer Nonlinear Program (MINLP), both of 

which are significantly more difficult to solve than their convex 

counterparts. 

Classical models like Markowitz’s mean-variance 

optimization assume continuous asset weights, leading to well-

behaved convex problems that can be solved using Quadratic 

Programming (QP). However, introducing real-world 

constraints such as the need to decide whether a stock is 

included at all (cardinality) or to account for fixed transaction 

fees requires binary or integer decisions (e.g., "Do I include this 

stock?" or "How many full lots should I buy?"). These decisions 

shift the problem into the realm of Mixed-Integer Programming 

(MIP), where standard continuous solvers are no longer 

applicable. This fundamental change in structure is precisely 
why Branch and Bound algorithms are essential; they are 

purpose-built to efficiently explore discrete solution spaces and 

find globally optimal solutions under such complex 

constraints.Table 1 below summarizes key constraints relevant 

to retail investors and their computational implications: 

 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

Constraint 
Name 

Purpose Mathematical 
Formulation 

Complexity 

Budget Ensures total 
capital is fully 

allocated 

Σxᵢ = 1 Convex 

Long-Only Prevents short 
shelling; only 
allows asset 
purchases 

xᵢ ≥ 0 Convex 

Holding 
Limits 

Restricts asset 
concentration; 

promotes 
diversification 

lᵢ ≤ xᵢ ≤ uᵢ Convex 

Cardinality Limits number 
of active 
holdings and 
manageability 

MinNum ≤ Σyᵢ ≤ 

MaxNum 

Non-Convex 
(requires  
binary Vars) 

Fixed 

Transaction 
Costs 

Models fixed 

trading fees 
regardless of 
trade size 

Cost = fixed_fee 

× zᵢ 

Non-Convex 

(binary  
decision:  
trade/no trade) 

Minimal 
Transaction 
Unit 

Enforces 
trading in 
minimum lot 
sizes, e.g., 

whole shares 

xᵢ = 0 or xᵢ ≥ 

min_unit_valueᵢ 

Non-Convex 
(integer or  
binary vars) 

Portfolio 
Turnover 

Limits amount 
of rebalancing 
(change from 
current 
holdings) 

‖x - x₀‖₁ ≤ τ Convex 
(L₁ norm) 

Table 1. Key Portfolio Constraints for Retail Investors 

D. Branch and Bound 

First, let’s understand what Branch and Bound is and how 

does it work? The Branch and Bound (B&B) algorithm is a 

powerful and versatile general-purpose algorithmic framework 

specifically designed for solving optimization problems that 
involve discrete or integer decisions. Unlike exhaustive 

enumeration, which checks every single possibility (often 

computationally infeasible), B&B systematically searches for 

the optimal solution without having to explore the entire 

solution space. It is particularly effective for problems where 

the objective is to either minimize or maximize a function, 

subject to various constraints. 

B&B operates on the principle of dynamically building a 

state-space tree to explore potential solutions. While it shares 

similarities with tree-search algorithms like Depth-First Search 

(DFS) or Breadth-First Search (BFS) in its exploration method, 
its core strength lies in its intelligent pruning mechanism that 

significantly reduces the search space. B&B can be seen as a 

sophisticated combination of BFS and a least cost search 

strategy. Instead of simply expanding nodes based on their 

generation order (like FIFO in pure BFS), B&B prioritizes 

expanding the node that has the most promising cos" (or 

bound). 

At an elevated level, the algorithm systematically works 

through the following iterative steps: 

 

1. Relaxing the Integrality Constraints (Bounding Phase) 

- The first crucial step in B&B is to relax the 
complex integer or discrete constraints of the 

original optimization problem. For instance, if a 

problem requires variables to be whole numbers 

(e.g., you can only buy 5 or 6 shares, not 5.5), 

these constraints are temporarily ignored, 

allowing the variables to take on continuous 

(fractional) values. 

- This transformed problem is often a Linear 

Program (LP) if the original problem becomes 

linear after relaxation, or a Quadratic Program 

(QP) if the objective function is quadratic (like 

variance in portfolio optimization) and constraints 
are linear. 

- Solving this relaxed, continuous problem 

provides an optimistic bound on the objective 

function. For a minimization problem, this 

relaxed solution gives a lower bound (the best you 

could possibly do if you didn't have to stick to 

integers), and for a maximization problem, it 

gives an upper bound. This bound is critical 

because it tells us the best possible outcome 

within that specific branch of the search tree. 

2. Branching on a Fractional Decision Variable 

If the solution obtained from the relaxed problem 

contains any variables that are supposed to be integers but 

end up with fractional values (e.g., suggesting you buy 2.7 

shares of stock), the algorithm performs a branching 

operation. 

This involves creating two (or more) new subproblems 

from the current node. For a fractional variable x_i with a 

value of v, one subproblem will add the constraint x_i ≤ 

floor(v) (rounding down), and the other will add x_i ≥ 

ceil(v) (rounding up). For example, if x_i = 2.7, one branch 

explores solutions where x_i ≤ 2, and the other where x_i ≥ 

3. 
This process effectively divides the original problem's 

feasible region into smaller, mutually exclusive sub-

regions. 

3. Bounding Each Subproblem 

Each newly created subproblem is then solved by 

relaxing its integrality constraints, just like the initial 

problem. The optimal objective value from this relaxed 

version serves as the bound for that specific subproblem. 

This bound indicates the best possible result that could be 

achieved if we were to continue exploring solutions within 

that branch. The cost ĉ(i) of a node i typically estimates the 
cheapest path to a goal node through i. In a general scenario 
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where the solution's location is unknown, ĉ(i) is estimated 

heuristically and represents a lower bound on the search cost 

from state i. It can be seen as ĉ(i) = f(i) + ĝ(i), where f(i) is 

the cost to reach node i from the root, and ĝ(i) is the 

estimated cost from node i to the goal node. 
 

4. Pruning (Eliminating Unpromising Branches) 

This is where Branch and Bound gain their efficiency. 

The algorithm prunes (discards) any branch of the search 

tree that is deemed unpromising, meaning it cannot lead to 

a better solution than the best feasible (integer) solution 

found so far (known as the incumbent solution). A branch 

can be pruned if:  

- Its LP/QP relaxation is infeasible (no solution 

exists that satisfies all constraints, even relaxed 

ones). 

- Its calculated bound is worse than the objective 

value of the current incumbent integer solution. 

For example, in a minimization problem, if a 

branch's lower bound is already higher than an 

integer solution found elsewhere, that branch can 

be cut. 

- The LP/QP relaxation of a subproblem yields an 

integer solution directly. If this integer solution is 
better than the current incumbent, it becomes the 

new incumbent solution. 

 

5. Updating the Incumbent Solution 

Whenever a relaxed subproblem yields a solution 

where all integer variables happen to be integers, and this 

solution is better than the current best integer solution found 

so far, it becomes the new incumbent solution. This 

incumbent solution is the best feasible (integer-respecting) 

solution known at any given point. 

6. Repeating the Process 

The algorithm continually selects the most promising 
live node (the one with the best bound, e.g., the smallest 

lower bound for a minimization problem) and repeats the 

branching, bounding, and pruning steps. 

This iterative process continues until there are no more 

active branches that could potentially yield a better solution 

than the current incumbent. At this point, the incumbent 

solution is guaranteed to be the global optimum (or within a 

user-specified tolerance for large problems). 

By systematically exploring the solution space while 

intelligently discarding substantial portions through 

pruning, the Branch and Bound algorithm provides a robust 

and often efficient method for solving complex optimization 

problems with discrete or integer variables, even when 

facing non-convexities introduced by factors like fixed 

transaction costs. 

III. ANALYTICAL CALCULATION 

Now that we've covered the essential groundwork, it's time 

to put our strategy to the test using actual real-world market 
data. Below, you'll find a complete, step-by-step example. We'll 

be using real closing-price data for a handful of stocks that we'll 

assume are our top picks, ready to be organized into an optimal 

portfolio. 

Table 2. Closing Prices of Stocks (May 28 - June 4, 2025) 

Date (YY-MM-

DD) 

GOOG AAPL MSFT 

2025-05-28 171.38 200.42 460.69 

2025-05-29 172.96 199.95 458.68 

2025-06-02 170.37 201.70 461.97 

2025-06-03 167.71 203.27 462.97 

2025-06-04 169.39 202.82 463.87 

 Now we calculate the daily simple return of the data above 

by: 

(7) 

  

 where Pt is the closing price of day t and Pt-1 is the closing 

price of the day before t. And after applying so we get these 

results: 

Date (YY-

MM-DD) 

GOOG AAPL MSFT 

2025-05-29 (172.96−171.

38)/171.38 = 

−0.002838 

(199.95−200.

42)/200.42 = 

−0.002345 

(458.68−460.

69)/460.69 = 

−0.004340 

2025-06-02 (170.37−172.

96)/172.96 = 

−0.01472 

0.00879 0.00719 

2025-06-03 (167.71−170.

37)/170.37 = 

−0.01582 

 0.00763 0.00216 

2025-06-04 (169.39−167.

71)/167.71 = 

0.00980 

−0.00221 0.00194 

 
 Now we calculate μ (mean) and Σ (covariance) with the 

equation as follows: 
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Mean return(μ):  

(8) 

Covariance(Σ): 

    (9) 

 

After applying the formula, we get the following values: 

 

 

Before we start computing using the algorithm, we need to 

determine the constraints and so the constraint is as follows: 

- Budget constraint: 

   

- Long-only 

 

- Linking weight to selection 

 

- Cardinality (at most 2 assets to buy) 

 

- Risk aversion and max positions 

 

Next, we are gonna start the Branch & Bound Steps: 

1. First, compute the Root, to do that we first compute 

the weight (w0) which is GOOG using Lagrangian 

with multiplier γ for  ∑wi = 1: 

(10) 

 

 Next using KKT first-order conditions: 

 

 Now we can solve the 3 x 3 system together with 1T w = 1 

to find w and γ. Then we can use a small-scale QP solver or by 

explicitly inverting and enforcing ∑i wi = 1) yields, we get the 

following: 

 

 The first entry is zero because GOOG’s expected return is 

negative, so the optimal risk-return tradeoff puts no weight on 

a losing asset. And so now we can compute f0:

 

2. First Branch: yb (AAPL has wb = 0.64 fractional) 

We now create two child nodes from branching on yB  ∈ 

{0,1}  

- Node 1 (yb = 0 → Wb = 0) 

Since ∑wi = 1, we must now solve the root problem over only 

GOOG and MSFT: 

 

That is to optimize over: 

 w=[wA, 0, wC] (only GOOG and MSFT will be considered) 

Now we are gonna compute the 2 cases and choose the one that 

is larger in f value. 

 Case 1: Full GOOG → w=[1, 0, 0] 

 

Case 2: Full MSFT → w = [0, 0, 1] 

 

So, we chose case 2 since its value is higher. 

- Node 2: yb = 1 → 0 ≤ wb ≤ 1 

We now solve the relaxed QP again, but still under the 

cardinality constraint (at most 2 assets selected). GOOG is 

already excluded due to negative return, so we allow: 

AAPL and MSFT, or maybe AAPL only if optimal 

Running the QP solver (or through direct substitution), we get: 

 

We keep this node, since it is better than the current best one 

(0.001715). 

3. Node 2 has 2 more child’s 
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And from Node 2, we can get another 2-child node which is 

- Node 2A (yc = 0) 

- Node 2B (yc = 1) 

And with the steps provided like before, we can compute each 

node to be 

- Node 2A: 

 

- Node 2B: 

 

As we can see from the results, Node 2B is worse than 0.003055 

so we prune node 2B and we choose 2A since it is the highest 

in value. 

So, from Branch & Bound, the optimization reveals that, under 

the given constraints (max 2 assets, long-only, and linking 

constraints), the best portfolio is to fully invest in AAPL only, 

which offers the highest risk-adjusted return in this setup. The 

method allows us to systematically explore and prune 

suboptimal combinations, making the selection data-driven, 

optimal, and explainable. 

 

Picture 1. Visualization of Branch and Bound shown with tree 

(Source: Writer’s Picture) 

IV. PROGRAM IMPLEMENTATION 

 Obviously, we wouldn’t want to perform these calculations 
by hand. Therefore, the writer has provided a Python-based 

program that leverages SciPy and NumPy to compute the 

optimal portfolio quickly and accurately. 

 

 
Picture 2. Program Visualization 

(Source: Writer’s Picture) 

 

Picture 3. Program Results 

(Source: Writer’s Picture) 

 As we can see from the program, we can conclude that our 

calculation that we have done earlier was correct but was a bit 

off because we were doing some approximation. 

 This tool is especially helpful when scaling up the problem, 

say, from 3 assets to 30 or more here manual calculation would 

be impractical. With just a few lines of code and real market 

data as input, we can explore various portfolio combinations 
and instantly get optimal solutions, all while respecting 

complex constraints like cardinality and risk control. 
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 In other words, the program does heavy lifting, so we can 

focus on interpreting the results and making smart investment 

decisions. 

V. CONCLUSION 

 Based on the comprehensive analysis and computation we 

have conducted, it is evident that solving the portfolio 

optimization problem under real-world constraints such as 

budget limitations, fixed transaction fees, and a cap on the 

number of investable assets is significantly more complex than 
traditional continuous models suggest. The incorporation of 

cardinality constraints and binary decisions transforms the 

problem into a Mixed-Integer Quadratic Program (MIQP), 

which cannot be efficiently solved by conventional convex 

solvers. 

 

 By leveraging the Branch and Bound algorithm, we 

demonstrated a practical, exact approach capable of handling 

these discrete constraints. Our numerical example, based on 

real market data, validates that this method not only finds the 

globally optimal portfolio under the imposed limitations, but 
also remains interpretable and applicable for retail investors. 

The results matched our expectations and manual 

approximations, but with greater precision and speed, 

especially when scaled. 

 

 Practically speaking, this framework can assist individual 

investors in building portfolios that are not only optimal in 

terms of risk-return tradeoffs, but also actionable respecting 

trading costs, minimum trade units, and asset manageability. As 

a recommendation, future work can explore extensions to 

dynamic or multi-period portfolio models, integrate more 

granular constraints like tax lots, or combine Branch and Bound 
with heuristics to improve scalability for larger asset universes. 

VIDEO LINK AT YOUTUBE 

Youtube Link: https://youtu.be/mD76ahKVbd4?si=Yifm-

CzMUBbt2r3p  

Source Program: 

https://github.com/KennethhPoenadi/MakalahSTIMA  
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